Вариант 1 1. В молекулах бутина-2 имеются связи углерод-углерод 1) только простые 2) только двойные 3) простые и двойные 4) простые и тройные 2. Термодинамический процесс, протекающий при постоянном объеме, называется: 1) изобарным; 2) адиабатным; 3) изотермическим; 4) изохорным. 3. Фактор, влияющий на смещение химического равновесия: 2) Катализатор 1) Вид химической связи 3) Природа реагирующих веществ 4) Температура 4. Аппарат, в котором передача теплоты от одного теплоносителя к другому происходит, с помощью теплоаккумулирующей насадки называется 1) рекуперативным 2) контактным 3) регенеративным 4) барботажным 5) смесительным 5. Ректификация – это 1) Поглощение паров твердым поглотителем; 2) Растворение жидкости в жидкости; 3) Пропускание суспензии через фильтрующую перегородку; 4) Разделение смеси в результате многократного испарения. 6. Этап эксплуатации оборудования, имеющий целью установку оборудования в рабочем помещении предприятия, его отладку и запуск 1) ремонт оборудования; 2) монтаж оборудования; 3) применение оборудования по назначению.

- 7. Движущей силой процесса теплопередачи является:
- 1) разность температур;
- 2) разность давлений;
- 3) разность скоростей движения теплоносителей;
- 4) разность значений коэффициентов теплоотдачи;
- 5) разность значений коэффициентов теплопроводности.
- 8. Процесс концентрирования растворов твердых нелетучих веществ путем удаления жидкого растворителя в виде паров называется:
- 1) кристаллизация; 2) нагревание; 3) выпаривание; 4) экстракция.
- 9. Величина, характеризующая аппарат или режим его работы, называется:
- 1) производительность;
- 2) параметр;
- 3) технологический процесс;
- 4) технологический регламент
- 10. Определить количество теплоты, которое проходит вследствие теплопроводности в единицу времени через стенки картера авиадвигателя, если толщина стенок 5,5 мм, площадь поверхности стенок 0,3 м 2 , температура на внутренней поверхности картера 75°C, на наружной 65°C, а средний коэффициент теплопроводности стенок $\lambda = 175 \text{ BT/m} \times \text{K}$.

Вариант 2
1. Число σ-связей в молекуле бутадиена-1,3 равно
1) 2 2) 4 3) 9 4) 11
2. Термодинамический процесс, протекающий при постоянной температуре,
называется:
1) изобарным; 2) адиабатным; 3) изотермическим; 4) изохорным.
3. При повышении температуры на 10°С (температурный коэффициент равен 2)
скорость химической реакции увеличивается:
1) в 2 раза 2) в 4 раза 3) в 8 раз 4) в 16 раз
4. Тепломассообменные аппараты, в которых процессы тепло- и массообмена
протекают при непосредственном соприкосновении двух и более теплоносителей,
называются
1) рекуперативными 2) контактными 3) регенеративными
4) барботажными 5) смесительными
5. Какие потоки принимают участие в процессе ректификации?
1) Жидкость – жидкость;
2) Пар — пар;
3) Пар – жидкость;
4) Твердое тело – жидкость.
6. Непосредственная утрата проектных свойств и характеристик единицы
оборудования в ходе его использования
1) физический износ 2) экономический износ 3) функциональный износ
7. Наиболее выгодным направлением движения теплоносителей является:
1) прямоток; 2) перекрёстный ток; 3) смешанный ток;
4) противоток; 5) вибрационный ток.
8. Вакуум – выпарка позволяет
1) проводить выпаривание при высокой температуре нагревающего агента;
2) увеличить поверхность теплообмена;
3) использовать греющие теплоносители с меньшим температурным потенциалом;
4) увеличить температуру кипения раствора.
9. Реакции, при проведении которых вещества находятся в разных агрегатных
состояниях:
1) гомогенные; 2) гетерогенные;
3) высокотемпературные; 4) последовательные.
10. Рассчитать стандартную теплоту реакции
$Fe_3O_4(\kappa) + H_2(\Gamma) \rightarrow Fe(\kappa) + H_2O(\kappa)$
$\Delta H^0_{298,}$ кДж/моль -1117,9 0 -286,0

Вариант 3
1. Две π-связи имеются в молекуле
1) 2-метилпентана 2) бензола
3) бутена-2 4) бутина-2
2. Согласно первому закону термодинамики:
1) производимая системой работа всегда больше, чем теплота, затраченная на
ее производство;
2) производимая системой работа всегда равна теплоте, затраченной на ее
производство;
3) производимая системой работа всегда меньше, чем теплота, затраченная на ее производство;
4) возможен двигатель, совершающий сколь угодно долго работу, без
подведения энергии извне.
3. С увеличением давления равновесие обратимой реакции, уравнение которой
$C_2H_{4(\Gamma)}+H_2O_{(\Gamma)}\leftrightarrow C_2H_5OH_{(\Gamma)}$
1) не изменится 2) сместится в сторону продуктов реакции
3) сместится в сторону исходных веществ
4. Вещество, отдающее теплоту другому веществу, называется
1) теплоносителем 2) влагопроводчиком 3) температуропроводчиком
4) теплопроводчиком 5) влагоносителем
 Флегма – это
1) Конечный продукт, удаляемый из колонны;
2) Частично возвращенный дистиллят;
3) Боковой погон; 4) Поток жидкости, удаляемый из нижней части колонны.
6. Этап эксплуатации оборудования, имеющий целью поддержание
работоспособности и других эксплуатационно-технических характеристик в
установленных пределах -
1) техническое обслуживание; 2) ремонт.
7. В тепловых процессах тепло передаётся самопроизвольно:
1) от холодного потока к горячему потоку;
2) от воздушной среды к дымовым газам;
3) от горячего потока к холодному потоку;
4) от токов высокой частоты к токам низкой частоты;
5) от холодной воды к водяному пару.
8. В многокорпусных выпарных установках экономия пара достигается за счет
увеличения
1) температуры и давления 2) концентрации 3) поверхности теплообмена
9. Какой этап не относится к этапам технологического процесса
1) подготовка сырья;
2) химическое превращение;
3) выделение целевого продукта;
4) обогащение.
10. Какой объем займет хлороводород при температуре 55 °C и давлении 3 атм.,
если при нормальных условиях он занимает объем 44,8 л

Вариант 4
1. В молекуле выделенный атом углерода (CH_3) ₃ C - $CH(CH_3)$ - CH_2 - H_3
1) первичный 2) вторичный
3) третичный 4) четвертичный
2. Энтальпия системы определяется соотношением:
1) U_2 - U_1 = ΔU ;
2) $A = p \cdot \Delta V$;
3) $H = U + pV$;
4) G = H - TS.
3. Повышение температуры смещает химическое равновесие вправо в обратимой
реакции:
1) $2H_2 + O_2 \leftrightarrow 2H_2O + Q$ 2) $SO_2 + H_2O \leftrightarrow H_2SO_3 + Q$
3) $2NO + O_2 \leftrightarrow 2NO_2 + Q$ 4) $C_4H_{10} \leftrightarrow C_4H_8 + H_2 - Q$
4. В межтрубном пространстве кожухотрубчатых теплообменных аппаратов
устанавливают перегородки
1) для задержания теплоносителя внутри аппарата
2) для компенсации температурных удлинений
3) для контроля за расходом теплоносителя
4) для удобства эксплуатации
5) с целью увеличения скорости теплоносителя
5. Высокотемпературное термотехнологическое устройство с рабочей камерой, огражденной от окружающей атмосферы
1) Теплообменник; 2) Трубчатая печь;
3) Ректификационная колонна; 4) Кристаллизатор.
6. Вид износа, представляющий собой разрушение поверхностей в результате
воздействия ударной волны, возникающей при взрывном схлопывании газовых
пузырьков, образующихся из-за перепадов давления в жидкостном потоке,
обтекающем конструкции, -
1) абразивный; 2) адгезионный; 3) кавитационный.
7. Теплопроводность характерна для:
1) газообразных потоков; 2) воздушных потоков;
3) жидких сред; 4) твёрдых тел; 5) пластичных масс.
8. К стадиям кристаллизации не относится:
1) отделение кристаллов от маточного раствора; 2) коагуляция;
3) промывка и сушка кристаллов; 4) собственно кристаллизация.
9. Перевод прореагировавших веществ в их первоначальное состояние для
повторного использования, называется:
1) обогащение; 2) регенерация; 3) комплексное использование;
4) аэрирование.
10. Рассчитать стандартную теплоту реакции
$SO_2(\Gamma) + O_3(\Gamma) \rightarrow SO_3(\Gamma) + O_2(\Gamma)$
$\Delta H^0_{298,}$ кДж/моль -297,2 -142,3 -376,2 0

Вариант 5 1. В молекуле 2-метилбутана число первичных атомов углерода равно 1) 3 2) 4 3) 6 4) 2 2. Термодинамической формой записи уравнения химической реакции является: $C_{(r)} + O_{2(r)} = CO_{2(r)};$ 1) $C_{(T)} + O_{2(\Gamma)} = CO_{2(\Gamma)}; \Delta H_{298K} = -393,5 \text{ кДж};$ 2) 3) $C+O_2=CO_2$ 3. Химическое равновесие в системе наступает, когда: 1) концентрации реагирующих веществ больше концентрации продуктов реакции 2) концентрация продуктов реакции больше концентрации исходных веществ 3) скорость прямой реакции равна скорости обратной реакции 4) температура и давление в ходе реакции изменяются 4. Инженерные конструкции, которые обладают рабочим объемом и оснащены энергетическими и контрольно-измерительными средствами управления и мониторинга техпроцессом, называются 1) аппаратами; 2) машинами; 3) транспортными средствами. 5. Активированный уголь, силикагель, алюмосиликаты, цеолиты – это 1) бинарные смеси 2) растворы 3) адсорбенты 4) абсорбенты 5) растворители 6. Вид износа, заключающийся в разрушении поверхностного слоя материала в ходе контакта с более твердыми частицами других материалов 2) адгезионный; 3) кавитационный. 1) абразивный; 7. Количество теплоты, переданное теплопроводностью, определяется: 1) $Q = \lambda / \delta * S * (T_{cr1} - T_{cr2});$ 2) Q = RTV;3) Q = FKT; 4) Q = FRC; 5) $Q = WDR \setminus 4$. 8. Образование новой твердой фазы, выделяющейся из раствора, расплава или пара называется 1) кристаллизация; 2) нагревание; 3) выпаривание; 4) экстракция. 9. Совокупность операций, проводимых в определенной последовательности в

- 9. Совокупность операций, проводимых в определенной последовательности в целях получения из сырья готовой продукции это:
- 1) химико-технологический процесс;
- 2) технологический режим;
- 3) технологический параметр;
- 4) технологический регламент.
- 10. Требуется подогревать этанол от 40°C до температуры кипения 78°C. В качестве теплоносителя используется конденсат водяного пара давлением 3 ат (абс). Температура конденсации при этих условиях 133 °C. Конденсат охлаждается до температуры 93°C. Определить среднюю разность температур для прямотока и противотока.

Вариант 6
1. Сколько валентных орбиталей углерода не участвуют в гибридизации в sp ² -
гибридизованном атоме углерода?
1) 1 2) 2 3) 3 4) 4
2. Согласно следствию из закона Гесса, тепловой эффект химической реакции
равен:
1) сумме теплот образования конечных веществ за вычетом суммы теплот
образования исходных веществ с учетом их стехиометрических
коэффициентов;
2) сумме теплот образования исходных веществ за вычетом суммы теплот
образования конечных с учетом их стехиометрических коэффициентов;
3) сумме теплот образования конечных и исходных веществ с учетом их
стехиометрических коэффициентов;
4) сумме теплот образования конечных веществ с учетом их
стехиометрических коэффициентов.
3. Фактор, не влияющий на скорость химической реакции:
1) Концентрация 2) Катализатор
3) Способ получения реагентов 4) Температура
4. Регенерационные теплообменники, рекуператоры относятся к оборудованию,
обеспечивающему
1) химические процессы; 2) механические процессы; 3) тепловые процессы
5. Массообмен – это
1) Переход вещества из одной фазы в другую;
2) Превращение одних компонентов в другие;
3) Обмен теплом между потоками; 4) Перемешивание реагентов.
6. Этап эксплуатации оборудования, в течение которого осуществляются
операции, имеющие целью приведение оборудования в работоспособное
состояние, как по определенному предупредительному плану, так и для
восстановления техники из-за отказов -
1) техническое обслуживание; 2) ремонт.
7. Коэффициент теплопроводности есть величина обратная:
1) температуре; 2) толщине стенки; 3) давлению;
4) расходу пара; 5) уровню.
8. Найти неверное утверждение: Выпаривание используют для того, чтобы иметь
возможность провести
1) дистилляцию 2) кристаллизацию 3) экстракцию
4) концентрирование растворов нелетучих веществ.
9. Как называется процесс обработки сырья с целью отделения полезной его
части от неполезной:
1) регенерация; 2) дегазация; 3) обогащение; 4) комплексное использование.
10. Возможно самопроизвольное протекание реакции при стандартных условиях?
$H_2O(\Gamma) + C \rightarrow CO_2(\Gamma) + H_2(\Gamma)$
$\Delta G^0_{298,}$ кДж/моль -228,8 0 -394,6 0

Вариант 7
1. В молекуле пропена CH_2 = CH - CH_3 выделенный атом углерода находится в
состоянии гибридизации
1) sp 2) sp ² 3) sp ³ 4) dsp ²
2. Для эндотермической реакции:
1) $\Delta H_{(xимической реакции)} > 0;$
2) $\Delta H_{(xимической реакции)} < 0;$
3) $\Delta H_{(xимической реакции)} = \Delta U;$
4) $\Delta H_{(xимической реакции)} = 0.$
3. Фактор, не влияющий на смещение химического равновесия:
1) Давление 2) Концентрация 3) Температура
4) Природа реагирующих веществ
4. Адсорберы, сушилки, оборудование для выщелачивания и растворения,
ионообменные аппараты – это оборудование, обеспечивающее
1) массообменные процессы; 2) механические процессы;
3) тепловые процессы
5. Процесс, при котором для разделения смесей применяют твердый
поглотитель:
1) коагуляция; 2) дегазация; 3) адсорбция; 4) абсорбция.
6. Этап эксплуатации оборудования, представляющий собой непосредственное
использование оборудования для выполнения технологических процессов -
1) ремонт оборудования;
2) монтаж оборудования;
3) применение оборудования по назначению.
7. Конвекция бывает:
1) за счёт разности давлений;
2) за счёт разности уровней;
3) вынужденной и естественной;
4) только естественной.
8. Образование твердой фазы может происходить только в растворах, в которых
концентрация кристаллизующегося вещества превышает концентрацию
насыщения, то есть из
1) пересыщенных растворов; 2) насыщенных растворов;
3) разбавленных растворов.
9. Как называется процесс, при котором катализатор используют для ускорения
реакции:
1) гомогенный катализ; 2) гетерогенный катализ;
3) отрицательный катализ; 4) положительный катализ.
10. Стандартная теплота образования аммиака -46,19 кДж/моль. Рассчитать
количество теплоты, выделившейся при реакции взаимодействия 70 г азота с

водородом.

Вариант 8
1. Тетраэдрическое окружение имеет атом углерода в молекуле
1) этина 2) этена 3) этана 4) бутадиена-1,3
2. Изменение энергии Гиббса химической реакции равно:
 алгебраической сумме ∆G образования продуктов реакции за вычетом
алгебраической суммы ΔG образования исходных веществ (без учета
стехиометрических коэффициентов);
 алгебраической сумме ΔG образования продуктов реакции за вычетом
алгебраической суммы ΔG образования исходных веществ с учетом
стехиометрических коэффициентов;
 алгебраической сумме ΔG образования исходных веществ за вычетом
алгебраической суммы ΔG образования продуктов реакции (без учета
стехиометрических коэффициентов);
 алгебраической сумме ΔG образования исходных веществ за вычетом
алгебраической суммы ΔG образования продуктов реакции с учетом
стехиометрических коэффициентов.
3. При повышении температуры на 30°С (температурный коэффициент равен 2)
скорость химической реакции увеличивается:
1) в 2 раза 2) в 4 раза 3) в 8 раз 4) в 16 раз
4. Насадка создает
1) Увеличенную поверхность для контакта фаз; 2) Молекулярную диффузию;
3) Спокойное течение жидкости; 4) Режим подвисания.
5. Массообмен – это
1) Перемешивание реагентов; 2) Превращение одних компонентов в другие;
3) Обмен теплом между потоками 4) Переход вещества из одной фазы в другую;
6. Функциональный износ подразделяют по вызвавшим его факторам:
1) моральный 2) технологический 3) физический
7. Укажите уравнение теплоотдачи:
1) $Q = K*S* (T_{cr1} - T_{cr2});$ 2) $Q = KFN;$ 3) $Q = LK(T2-T3);$
4) $Q = E*R*T*(F-F2);$ 5) $Q = G*C*N*(L\kappa - Kp).$
8. Что такое выпаривание?
1) процесс выделения твердого растворенного вещества из раствора;
2) процесс избирательного поглощения компонентов из газовых или парогазовых
смесей жидкими растворителями;
3) процесс концентрирования растворов твердых нелетучих веществ путем
удаления жидкого растворителя в виде паров;
4) процесс разделения суспензий при помощи пористой перегородки.
9. Как называются природные материалы, используемые в производстве промышленных продуктов:
1 1
1) катализаторы; 2) отходы; 3) сырье; 4) углеводороды.
10. Определить количество теплоты, которое передается в единицу времени через стенку толщиной 10 мм, площадь поверхности 0,1 м ² , если стенка
выполнена из стали ($\lambda = 60 \text{ Bt/м} \times \text{K}$). Температуры на поверхностях стенки
поддерживаются постоянными и равными 80°C и 50°C.
поддерживаются постояплыми и равлыми об с и 30 с.

Вариант 9
1. Карбоксильную группу содержат молекулы
1) спиртов 2) альдегидов
3) карбоновых кислот 4) сложных эфиров
2. Термодинамический процесс, протекающий при постоянном давлении,
называется:
1) изобарным; 2) адиабатным; 3) изотермическим; 4) изохорным.
3. При повышении температуры на 20°С (температурный коэффициент равен 3)
скорость химической реакции увеличивается:
1) в 2 раза 2) в 3 раза 3) в 4 раза 4) в 9 раз
4. Инженерные конструкции, в которых протекание технологического процесса
сопряжено с вводом в рабочий объем механической энергии посредством рабочих
органов оборудования, называются
1) машинами; 2) транспортными средствами; 3) аппаратами.
5. Как изменяется температура в ректификационной колонне снизу вверх?
1) Не изменяется; 3) Скачкообразно;
2) Понижается; 4) Повышается.
6. Какой из этапов не относится к процессу эксплуатации?
1) монтаж оборудования; 2) техническое обслуживание оборудования;
3) наладка и проведение испытаний; 4) утилизация оборудования.
7. Лучеиспускательная способность тела зависит от:
1) размеров тела;
2) положения тела в пространстве;
3) угла падения света;
4) температуры поверхности тела;
5) формы тела.
8. Какой из процессов не относится к массообменным:
1) абсорбция; 2) десорбция; 3) кристаллизация; 4) выпаривание
9. При увеличении поверхности соприкосновения фаз скорость реакции:
1) уменьшится; 2) увеличится; 3) останется неизменной;
4) сначала уменьшится, затем увеличится.
10. Можно восстановить оксид меди (II) водородом при стандартных условиях?
$CuO(\kappa) + H_2(\Gamma) \rightarrow Cu(\kappa) + H_2O(\kappa)$
$\Delta G^0_{298, \text{КДж/моль}}$ -129,5 0 -237,4

 Единая π-электронная система образуется в молекуле) циклобутана 2) бутена-1 3) пентадиена-1,4 4) бензола 2. Энтальпия по своему численному значению: 1) равна внутренней энергии системы; 2) больше внутренней энергии системы на величину работы расширения, совершенной при изменении объема системы от 0 до V; 3) меньше внутренней энергии системы на величину работы сжатия, совершенную при изменении объема системы от V до 0; 4) может как совпадать с внутренней энергией, так и отличаться от нее в ту или другую сторону. в. С увеличением концентрации SO₂ равновесие обратимой реакции, уравнение которой 2SO₂(r)+O₂(r) ↔ 2SO₃(r) + Q) Не изменится 2) Сместится в сторону продуктов реакции в кожухотрубчатых теплообменных аппаратах трубки чаще всего
 Энтальпия по своему численному значению: равна внутренней энергии системы; больше внутренней энергии системы на величину работы расширения, совершенной при изменении объема системы от 0 до V; меньше внутренней энергии системы на величину работы сжатия, совершенную при изменении объема системы от V до 0; может как совпадать с внутренней энергией, так и отличаться от нее в ту или другую сторону. С увеличением концентрации SO₂ равновесие обратимой реакции, уравнение соторой 2SO₂(r)+O₂(r) ↔2SO₃(r) + Q Не изменится 2) Сместится в сторону продуктов реакции Сместится в сторону исходных веществ В кожухотрубчатых теплообменных аппаратах трубки чаще всего
 равна внутренней энергии системы; больше внутренней энергии системы на величину работы расширения, совершенной при изменении объема системы от 0 до V; меньше внутренней энергии системы на величину работы сжатия, совершенную при изменении объема системы от V до 0; может как совпадать с внутренней энергией, так и отличаться от нее в ту или другую сторону. С увеличением концентрации SO₂ равновесие обратимой реакции, уравнение которой 2SO₂(r)+O₂(r) ↔ 2SO₃(r) + Q Не изменится 2) Сместится в сторону продуктов реакции Сместится в сторону исходных веществ В кожухотрубчатых теплообменных аппаратах трубки чаще всего
 2) больше внутренней энергии системы на величину работы расширения, совершенной при изменении объема системы от 0 до V; 3) меньше внутренней энергии системы на величину работы сжатия, совершенную при изменении объема системы от V до 0; 4) может как совпадать с внутренней энергией, так и отличаться от нее в ту или другую сторону. 6. С увеличением концентрации SO₂ равновесие обратимой реакции, уравнение которой 2SO₂(r)+O₂(r)↔2SO₃(r) + Q 1) Не изменится 2) Сместится в сторону продуктов реакции 2) Сместится в сторону исходных веществ 3. В кожухотрубчатых теплообменных аппаратах трубки чаще всего
совершенной при изменении объема системы от 0 до V; 3) меньше внутренней энергии системы на величину работы сжатия, совершенную при изменении объема системы от V до 0; 4) может как совпадать с внутренней энергией, так и отличаться от нее в ту или другую сторону. 5. С увеличением концентрации SO₂ равновесие обратимой реакции, уравнение которой 2SO₂(r)+O₂(r)↔2SO₃(r) + Q 1) Не изменится 2) Сместится в сторону продуктов реакции 2) Сместится в сторону исходных веществ 3. В кожухотрубчатых теплообменных аппаратах трубки чаще всего
 3) меньше внутренней энергии системы на величину работы сжатия, совершенную при изменении объема системы от V до 0; 4) может как совпадать с внутренней энергией, так и отличаться от нее в ту или другую сторону. 5. С увеличением концентрации SO₂ равновесие обратимой реакции, уравнение которой 2SO₂(г)+O₂(г) ↔ 2SO₃(г) + Q b) Не изменится 2) Сместится в сторону продуктов реакции c) Сместится в сторону исходных веществ d) В кожухотрубчатых теплообменных аппаратах трубки чаще всего
совершенную при изменении объема системы от V до 0; 4) может как совпадать с внутренней энергией, так и отличаться от нее в ту или другую сторону. 5. С увеличением концентрации SO₂ равновесие обратимой реакции, уравнение которой 2SO₂(r)+O₂(r)↔2SO₃(r) + Q 1) Не изменится 2) Сместится в сторону продуктов реакции 2) Сместится в сторону исходных веществ 3. В кожухотрубчатых теплообменных аппаратах трубки чаще всего
 4) может как совпадать с внутренней энергией, так и отличаться от нее в ту или другую сторону. 5. С увеличением концентрации SO₂ равновесие обратимой реакции, уравнение которой 2SO₂(г)+O₂(г)↔2SO₃(г) + Q 6. Не изменится 2) Сместится в сторону продуктов реакции 6. С увеличением концентрации SO₂ равновесие обратимой реакции, уравнение которой 2SO₂(г)+O₂(г)↔2SO₃(г) + Q 6. В кожухотрубчатых теплообменных аппаратах трубки чаще всего
или другую сторону. 3. С увеличением концентрации SO_2 равновесие обратимой реакции, уравнение которой $2SO_{2(r)}+O_{2(r)}\leftrightarrow 2SO_{3(r)}+Q$ 3. Не изменится 2) Сместится в сторону продуктов реакции (сместится в сторону исходных веществ (сместится в сторону исходных аппаратах трубки чаще всего
 С увеличением концентрации SO₂ равновесие обратимой реакции, уравнение соторой 2SO_{2(r)}+O_{2(r)}↔2SO_{3(r)} + Q) Не изменится 2) Сместится в сторону продуктов реакции) Сместится в сторону исходных веществ В кожухотрубчатых теплообменных аппаратах трубки чаще всего
которой $2SO_{2(\Gamma)}+O_{2(\Gamma)}\leftrightarrow 2SO_{3(\Gamma)}+Q$) Не изменится 2) Сместится в сторону продуктов реакции) Сместится в сторону исходных веществ . В кожухотрубчатых теплообменных аппаратах трубки чаще всего
) Не изменится 2) Сместится в сторону продуктов реакции с) Сместится в сторону исходных веществ с. В кожухотрубчатых теплообменных аппаратах трубки чаще всего
) Сместится в сторону исходных веществ . В кожухотрубчатых теплообменных аппаратах трубки чаще всего
. В кожухотрубчатых теплообменных аппаратах трубки чаще всего
A THE TRANSPORT THE STATE OF TH
выполняются прямыми
) для задержания теплоносителя внутри аппарата
2) для получения большой поверхности нагрева в небольшом объеме
3) для увеличения скорости теплоносителя
.) для удобства чистки и замены
б) для компенсации температурных удлинений
б. Чем насыщаются пары в колонне?
) Низкокипящим компонентом; 2) Средней концентрацией;
3) Высококипящим компонентом; 4) Флегмой.
б. Вид износа, приводящий к отделению поверхностных зон от детали в
езультате неоднократного возникновения адгезионных связей и их прерывания
ри продолжительном трении
) абразивный; 2) адгезионный; 3) кавитационный.
 Способы распространения тепловой энергии.
) циркуляцией потоков; 2) массообменном;
в) теплопроводностью, теплопередачей, теплоотдачей;
) теплопередачей, вихревыми потоками;
б) лучеиспусканием, движением среды.
В. При каких условиях экономичнее проводить процесс выпаривания?
) под вакуумом 2) при атмосферном давлении
б) под избыточным давлением.
. Величина, характеризующая содержание вещества в растворе - это:
) концентрация; 2) технологический параметр;
3) технологический режим; 4) технологический регламент.
0. Рассчитать стандартную теплоту реакции
$Al_2O_3(\kappa) + H_2(\Gamma) \rightarrow Al(\kappa) + H_2O(\kappa)$
$^{\Lambda}\mathrm{H}^{0}_{298,}$ кДж/моль -1676,8 0 -286,0

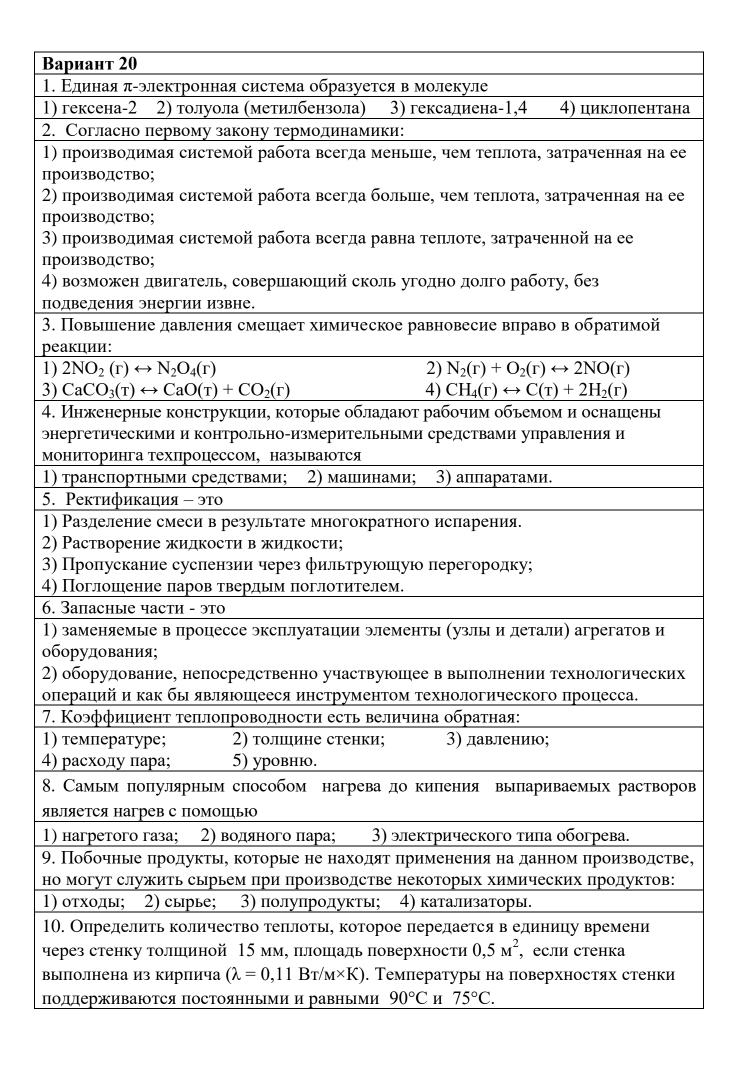
Вариант 11
1. В молекулах бутена-2 имеются связи углерод-углерод
1) только простые 2) только двойные
3) простые и двойные 4) простые и тройные
2. Термохимическим является следующее уравнение химической реакции:
1) $2H_{2(r)} + O_{2(r)} = 2H_2O_{(x)}$;
2) $H_{2(r)} + 1/2O_{2(r)} = H_2O_{(x)};$
3) $H_{2(r)} + 1/2O_{2(r)} = H_2O_{(ж)} + 285,83 кДж;$
4) $2H_2 + O_2 = 2H_2O_1$
3. Понижение давления смещает химическое равновесие вправо в обратимой
реакции:
1) $CH_4(\Gamma) + H_2O(\mathfrak{K}) \leftrightarrow 3H_2 + CO$ 2) $CO_2(\Gamma) + H_2O(\mathfrak{K}) \leftrightarrow H_2CO_3(\Gamma)$
3) $3H_2(\Gamma) + N_2(\Gamma) \leftrightarrow 2NH_3(\Gamma)$ 4) $2CO(\Gamma) + O_2(\Gamma) \leftrightarrow 2CO_2(\Gamma)$
4. Аппарат, в котором тепло от горячего теплоносителя к холодному передается
через разделяющую их стенку, называется
1) рекуперативным 2) контактным 3) регенеративным
4) барботажным 5) смесительным
5. Внутри колонны ректификации расположены
1) Трубные змеевики; 2) Горелки;
3) Контактные устройства; 4) Мешалки.
6. Какие виды работ проводят во время капитального ремонта?
1) замена или восстановление всех изношенных деталей и узлов; полная или
частичная замена изоляции, футеровки, противокоррозионной защиты; выверка и
центровка машины;
2) подтягивание болтов фланцевых изделий, смена прокладок, смена указателей
уровня;
3) перебивка сальников, промывка аппарата; заварка мелких трещин.
7. Конвекция бывает:
1) за счёт разности давлений;
2) вынужденной и естественной;
3) за счёт разности уровней;
4) за счёт разности температур;
5) только естественной.
8. Выпаривание растворов проводят с целью
1) повышения концентрации раствора;
2) понижения концентрации раствора:
3) отделения катионов от анионов.
9. Величина, характеризующая аппарат или режим его работы, называется:
1) выход продукта; 2) регламент; 3) процесс; 4) параметр.
10. Можно восстановить оксид кальция водородом при стандартных условиях?
$CaO(\kappa) + H_2(\Gamma) \rightarrow Ca(\kappa) + H_2O(\kappa)$
$\Delta G^0_{298, \text{КДж/моль}}$ -603,6 0 -237,4

Вариант 13
1. Две π-связи имеются в молекуле
1) 2-метилбутана 2) гексина-2
3) бензола 4) бутена-2
2. Для экзотермической реакции:
1) $\Delta H_{(xumuческой peakцuu)} > 0;$
2) $\Delta H_{(xимической реакции)} < 0;$
3) $\Delta H_{(xumuческой peakцuu)} = \Delta U;$
4) $\Delta H_{(xимической реакции)} = 0.$
3. При повышении температуры на 10°С (температурный коэффициент равен 3)
скорость химической реакции увеличивается:
1) в 2 раза 2) в 3 раза 3) в 4 раза 4) в 9 раз
4. Химические реакторы относятся к оборудованию, обеспечивающему
1) тепловые процессы; 2) механические процессы; 3) химические процессы
5. Аппарат для проведения высокотемпературных процессов:
1) ректификационная колонна; 2) транспортер; 3) печь 4) дозатор.
6. Какова цель ТО?
1) восстановление ресурса оборудования или его составных частей;
2) своевременное обнаружение и устранение неисправностей и дефектов
оборудования, предупреждение преждевременного износа узлов и деталей в
процессе эксплуатации и накопление данных, необходимых для правильного
определения объемов ремонтных работ, их периодичности и продолжительности;
3) комплекс работ по поддержанию им работоспособности оборудования в
периоды между плановыми остановками на ремонты и включает плановые
профилактические осмотры, уход, надзор и внутрисменное обслуживание
оборудования.
7. Лучеиспускательная способность тела зависит от:
1) размеров тела;
2) положения тела в пространстве;
3) температуры поверхности тела;
4) угла падения света;
5) формы тела.
8. При кристаллизации образование твердой фазы может происходить только в
растворах, являющихся
1) насыщенными 2) пересыщенными 3) разбавленными
9. Что не относится к параметрам технологического процесса:
1) температура; 2) конверсия; 3) давление; 4) уровень.
10. Возможно самопроизвольное протекание реакции при стандартных условиях?
$NH_3(\Gamma) + O_2(\Gamma) \rightarrow N_2(\Gamma) + H_2O(\mathfrak{R})$
$\Delta G^0_{298,}$ кДж/моль -16,7 0 -237,4

Вариант 14
1. В молекуле выделенный атом углерода (CH ₃) ₃ C- <i>C</i> H(CH ₃)-CH ₂ -CH ₃
1) первичный 2) вторичный
3) третичный 4) четвертичный
2. Согласно второму началу термодинамики, самопроизвольно могут протекать
только те процессы, для которых:
1) $\Delta G > 0$;
2) $\Delta G=0$;
3) $\Delta G < 0$;
4) ΔG может принимать любое значение.
3. С увеличением температуры равновесие обратимой реакции, уравнение
которой $CO_{2(r)}+C_{(r)}\leftrightarrow 2CO_{(r)}-Q$
1) Не изменится 2) Сместится в сторону продуктов реакции
3) Сместится в сторону исходных веществ
4. Оборудование, обеспечивающее хранение и транспортировку различных
веществ, относится к
1) основному оборудованию; 2) вспомогательному оборудованию.
5. Процесс избирательного поглощения компонентов из газовых и парогазовых
смесей жидкими поглотителями:
1) абсорбция; 2) десорбция; 3) ректификация; 4) кристаллизация.
6. Чем могут быть вызваны аварийные ремонты?
1) непрерывностью технологического процесса;
2) наличием источников теплоизлучения;
3) нарушением правил технической эксплуатации.
7. Способы распространения тепловой энергии:
1) теплопроводностью, теплопередачей, теплоотдачей;
2) массообменном;
3) циркуляцией потоков;
4) теплопередачей, вихревыми потоками;
5) лучеиспусканием, движением среды.
8. Самым популярным способом нагрева до кипения выпариваемых растворов
является нагрев с помощью
1) водяного пара; 2) нагретого газа; 3) электрического типа обогрева.
9. Выделение целевого продукта осуществляется:
1) обогащением; 2) ректификацией; 3) нейтрализацией; 4) окислением.
10. Рассчитать стандартную теплоту реакции
$H_2S(\Gamma) + NO(\Gamma) \rightarrow SO_2(\Gamma) + H_2O(\Gamma) + N_2(\Gamma)$
$\Delta H^0_{298,}$ кДж/моль -20,17 0 90,37 -297,2 -241,98 0

Вариант 15

- 1. В молекуле 2,4,4-триметилпентена-2 число первичных атомов углерода равно
- 1) 3 2) 4 3) 5 4) 6
- 2. На основании значения ΔG химической реакции можно сделать вывод о:
 - 1) принципиальной возможности ее самопроизвольного протекания при данных условиях;
 - 2) возможной скорости ее протекания при данных условиях;
 - 3) времени ее протекания;
 - 4) необходимости обязательного присутствия катализатора для осуществления реакции.
- 3. Понижение температуры смещает химическое равновесие вправо в обратимой реакции:
 - 1) $2NO(\Gamma) + O_2(\Gamma) \leftrightarrow 2NO_2(\Gamma) + Q$
- 2) $C_2H_6(\Gamma) \leftrightarrow 2C(\tau) + 3H_2(\Gamma) Q$


- 3) $2HBr(\Gamma) \leftrightarrow H_2(\Gamma) + Br_2(\pi) Q$ 4) $2HI(\Gamma) \leftrightarrow H_2(\Gamma) + I_2(\Gamma)$ 4. Устройства, предназначенные для обмена теплотой между греющей и обогреваемой рабочими средами, называются
- 1) массообменными аппаратами; 2) теплообменными аппаратами
- 3) термическими аппаратами.
- 5. К процессам массообмена относятся
- 1) Перегонка, адсорбция, экстракция;
- 2) Выделение и поглощение теплоты, сушка.
- 3) Теплопроводность, конвекция, лучеиспускание.
- 4) Политропические процессы.
- 6. Какие существуют виды ТО?
- 1) систематическое; 2) временное; 3) ежесменное.
- 7. Движущей силой процесса теплопередачи является:
- 1) разность скоростей движения теплоносителей;
- 2) разность давлений;
- 3) разность температур;
- 4) разность значений коэффициентов теплоотдачи;
- 5) разность значений коэффициентов теплопроводности.
- 8. Процесс концентрирования растворов твердых нелетучих веществ путем удаления жидкого растворителя в виде паров называется:
- 1) кристаллизация; 2) выпаривание; 3) нагревание; 4) экстракция.
- 9. Реакция, при которой исходное вещество полностью превращается в продукт реакции:
- 1) необратимая; 2) обратимая; 3) параллельная; 4) последовательная.
- 10. Определите объем, который займет при нормальных условиях газовая смесь, содержащая кислород массой 64 г и хлор массой 71 г.

Вариант 16		
1. Сколько валентных орбиталей углерода не участвуют в гибридизации в		
sp-гибридизованном атоме углерода?		
1) 1 2) 2 3) 3 4) 4		
2. Энтальпия по своему численному значению:		
1) равна внутренней энергии системы;		
2) меньше внутренней энергии системы на величину работы сжатия,		
совершенную при изменении объема системы от V до 0;		
3) может как совпадать с внутренней энергией, так и отличаться от нее в ту		
или другую сторону;		
4) больше внутренней энергии системы на величину работы расширения,		
совершенной при изменении объема системы от 0 до V.		
3. Реакция $2H_2(\Gamma) + O_2(\Gamma) = 2H_2O(\Gamma) + 484$ кДж является:		
1) эндотермической 2) экзотермической		
3) гетерогенной 4) каталитической		
4. Машины, установки и аппараты, в которых протекают различные		
технологические операции и процессы, относятся к		
1) основному оборудованию 2) вспомогательному оборудованию		
5. Дистиллят образуется в части ректификационной колонны		
1) средней; 2) не образуется; 3) верхней; 4) нижней.		
6. Загрязнения - аэрозоли, твердые тела и частицы, содержащиеся в воде и почве,		
называются		
1) биологическими; 2) химическими; 3) механическими.		
7. Наиболее выгодным направлением движения теплоносителей является:		
1) прямоток; 2) перекрёстный ток; 3) смешанный ток;		
4) вибрационный ток; 5) противоток.		
8. К стадиям кристаллизации не относится:		
1) отделение кристаллов от маточного раствора; 2) промывка и сушка		
кристаллов; 3) коагуляция; 4) собственно кристаллизация.		
9. Как называется процесс восстановления активности катализатора:		
1) регенерация; 2) крекинг; 3) фильтрование; 4) дегазация.		
10. Какой объем займет сероводород при температуре 60 °C и давлении 2 атм.,		
если при нормальных условиях он занимает объем 5,6 л?		

Danwayer 17				
Вариант 17				
1. В молекуле пропина $CH \equiv C - CH_3$ выделенный атом углерода находится в				
состоянии гибридизации				
1) sp 2) sp ² 3) sp ³ 4) dsp ²				
2. Для экзотермической реакции:				
1) $\Delta H_{(xumuчeckoŭ peakцuu)} > 0;$				
2) $\Delta H_{(xumuчeckoŭ peakцuu)} = 0;$				
3) $\Delta H_{(xumuчeckoŭ peakцuu)} = \Delta U;$				
4) $\Delta H_{(xumuчeckoй peakцuu)} < 0$.				
3. Фактор, влияющий на смещение химического равновесия:				
1) Катализатор 2) Тип связи				
3) Давление 4) Природа реагирующих веществ				
4. Аппарат, в котором передача теплоты от одного теплоносителя к другому				
происходит, с помощью теплоаккумулирующей насадки называется				
1) регенеративным 2) контактным				
3) рекуперативным 4) смесительным				
5. Аппарат с наполнителем, который используется для разделения пара на				
фракции				
1) Теплообменник; 2) Ректификационная колонна;				
3) Трубчатая печь; 4) Кристаллизатор				
6.Мероприятия, выполняемые для обеспечения или восстановления				
работоспособности оборудования и состоящие в замене или восстановлении				
отдельных узлов и деталей оборудования.				
1) текущий ремонт 2) капитальный ремонт 3) техническое обслуживание				
7. В тепловых процессах тепло передаётся самопроизвольно:				
1) от холодного потока к горячему потоку;				
2) от воздушной среды к дымовым газам;				
3) от токов высокой частоты к токам низкой частоты;				
4) от горячего потока к холодному потоку;				
5) от холодной воды к водяному пару.				
8. Образование новой твердой фазы, выделяющейся из раствора, расплава или				
пара называется				
1) выпаривание; 2) нагревание; 3) кристаллизация; 4) экстракция.				
9. Технологический параметр – это:				
1) реакции, при которых с одними и теми же исходными веществами происходит				
несколько превращений с образованием разных продуктов;				
2) перевод прореагировавших веществ в их первоначальное состояние для				
повторного использования;				
3) процесс восстановления активности катализатора;				
4) величина, характеризующая аппарат или режим его работы.				
10. Стандартная теплота образования Al ₂ O ₃ -1676,8 кДж/моль. Рассчитать				
количество теплоты, выделившейся при реакции взаимодействия 81 г алюминия				
с кислородом.				

Вариант 18				
1. Все атомы углерода находятся в состоянии sp ² -гибридизации в молекуле				
1) этина 2) 2-метилбутана 3) гексина-2 4) этена				
2. Согласно следствию из закона Гесса, тепловой эффект химической реакции				
равен:				
1) сумме теплот образования исходных веществ за вычетом суммы теплот				
образования конечных с учетом их стехиометрических коэффициентов;				
2) сумме теплот образования конечных и исходных веществ с учетом их				
стехиометрических коэффициентов;				
3) сумме теплот образования конечных веществ за вычетом суммы теплот				
образования исходных веществ с учетом их стехиометрических коэффициентов;				
4) сумме теплот образования конечных веществ с учетом их стехиометрических				
коэффициентов.				
3. При повышении температуры на 20°С (температурный коэффициент равен 2)				
скорость химической реакции увеличивается:				
1) в 2 раза 2) в 4 раза 3) в 8 раз 4) в 16 раз				
4. Регенеративные и контактные теплообменники, кристализационные и выпарные				
аппараты – это оборудование, обеспечивающее				
1) массообменные процессы; 2) механические процессы;				
3) тепловые процессы.				
5. По составу кубовой остаток в ректификационной колонне				
1) Содержит примеси НК; 2) Близок к чистому компоненту;				
3) Исходная смесь; 4) Содержит не прореагировавшие компоненты.				
6. Дать определение термину «техническое обслуживание» (TO)?				
1) комплекс операций или операция по поддержанию работоспособности или				
исправности изделия при использовании по назначению, хранении и				
транспортировании;				
2) комплекс операций по восстановлению исправности или работоспособности, а				
также по восстановлению ресурса оборудования или его составных частей;				
3) восстановление первоначальных характеристик оборудования,				
обусловленных нормативно-технической документацией.				
7. Количество теплоты, переданное теплопроводностью, определяется:				
1) $Q = \lambda / \delta * S * (T_{cr1} - T_{cr2});$ 2) $Q = RTV;$ 3) $Q = FKT;$				
4) $Q = FRC$; 5) $Q = WDR \setminus 4$.				
8. Найти неверное утверждение: Выпаривание используют для того, чтобы иметь				
возможность провести				
1) экстракцию 2) кристаллизацию 3) дистилляцию 4) концентрирование				
растворов нелетучих веществ.				
9. Изменение концентрации одного компонента, происходящее в единицу				
времени в единице объема называется:				
1) расход компонента; 2) выход компонента;				
3) скорость реакции; 4) производительность.				
10. Рассчитайте объем газа (при н. у.), который выделится при действии соляной				
`				
кислоты на 10 г кальция.				

Вариант 19			
1. Гидроксильную группу содержат молекулы			
1) простых эфиров 2) кетонов			
3) спиртов 4) сложных эфиров			
2. Энтальпия системы определяется соотношением:			
1) $H = U + pV$;			
2) U_2 - U_1 = ΔU ;			
3) $A = p \cdot \Delta V$;			
4) $G = H - TS$.			
3. С увеличением давления равновесие обратимой реакции, уравнение которой			
$CO_{(r)}+2H_{2(r)}\leftrightarrow 2CH_3OH_{(r)}+Q$			
1) Не изменится 2) Сместится в сторону продуктов реакции			
3) Сместится в сторону исходных веществ			
4. В межтрубном пространстве кожухотрубчатых теплообменных аппаратов			
устанавливают перегородки			
1) для удобства эксплуатации			
2) для компенсации температурных удлинений			
3) для контроля за расходом теплоносителя			
4) для задержания теплоносителя внутри аппарата			
5) с целью увеличения скорости теплоносителя			
5. В состав ситчатой тарелки входят			
1) Паровые стаканы; 3) Диск с отверстиями, переточные трубки;			
2) Клапана; 4) Диск, колпачки, переточные трубки.			
6. К каким видам ремонтов относят послеосмотровые?			
1) плановым; 2) аварийным.			
7. Теплопроводность характерна для:			
1) газообразных потоков;			
2) воздушных потоков;			
3) жидких сред;			
4) твёрдых тел;			
5) пластичных масс			
8. Что такое выпаривание?			
1) процесс концентрирования растворов твердых нелетучих веществ путем			
удаления жидкого растворителя в виде паров;			
2) процесс избирательного поглощения компонентов из газовых или парогазовых			
смесей жидкими растворителями;			
3) процесс выделения твердого растворенного вещества из раствора;			
4) процесс разделения суспензий при помощи пористой перегородки.			
9. Подготовку твердого сырья осуществляют:			
1) измельчением; 2) ректификацией; 3) нейтрализацией; 4) окислением.			
10. Определите объем, который займет при нормальных условиях газовая смесь,			
содержащая водород массой 3 г и азот массой 5,6 г.			

Вариант 21			
1. В молекуле бутина CH_3 - $C \equiv C$ - CH_3 выделенный атом углерода находится в			
состоянии гибридизации			
1) sp 2) sp ² 3) sp ³ 4) dsp ²			
2. Термодинамический процесс, протекающий при постоянном объеме,			
называется:			
1) изобарным; 2) изохорным; 3) изотермическим; 4) адиабатным.			
3. Реакции, в которых имеется поверхность раздела между взаимодействующими			
веществами,			
1) гетерогенные 2) обратимые			
3) экзотермические 4) гомогенные			
4. Грохоты, сепараторы, сита, классификаторы – это оборудование,			
обеспечивающее			
1) массообменные процессы; 2) механические процессы;			
3) тепловые процессы.			
5. Аппарат, в котором вырабатывается тепло, необходимое для проведения			
высокотемпературного процесса, называется:			
1) печь; 2) манометр 3) реактор; 4) барботажная колонна.			
6. Разнообразные газовые, жидкие и твердые химические соединения, которые			
вступают во взаимодействие с биосферой, называются загрязнения			
1) биологические; 2) химические; 3) энергетические.			
7. Процесс передачи теплоты внутри тела от одних частиц к другим вследствие			
их движения и соударений- это			
1) теплопроводность 2) конвекция 3) теплопередача излучением			
8. При каких условиях экономичнее проводить процесс выпаривания?			
1) при атмосферном давлении 2) под вакуумом			
3) под избыточным давлением.			
9. Реакции, при которых исходное вещество не сразу превращается в конечный			
продукт: сначала из него получается промежуточное вещество, которое затем			
превращается в конечный продукт, называются:			
1) последовательные; 2) параллельные;			
3) каталитические; 4) эндотермические			
10. Какой объем займет углекислый газ при температуре 35 °C и давлении 3 атм.,			
если при нормальных условиях он занимает объем 11,2 л?			

Вариант 22 1. Две π-связи имеются в молекуле 1) 2-метилбутана 2) пентина-1 3) бензола 4) бутена-2 2. Термодинамический процесс, протекающий при постоянном давлении, называется: 2) адиабатным; 1) изотермическим; 3) изобарным; 4) изохорным. 3. Сущность химических реакций сводится: 1) разрыву связей в молекулах исходных веществ и возникновению новых связей в молекулах продуктов реакции 2) к разрушению атомов, входящих в состав реагирующих веществ 3) к возникновению новых веществ из ничего 4) к разрушению молекул продуктов реакции. 4. Инженерные конструкции, в которых протекание технологического процесса сопряжено с вводом в рабочий объем механической энергии посредством рабочих органов оборудования, называются 1) транспортными средствами; 2) машинами; 3) аппаратами. 5. Ректификация – это 1) Поглощение паров твердым поглотителем; 2) Разделение смеси в результате многократного испарения; 3) Пропускание суспензии через фильтрующую перегородку; 4) Растворение жидкости в жидкости.

- 6. Источники загрязнения, вызванные естественными процессами
- 1) промышленные; 2) природные.
- 7. Процесс распространения теплоты в результате движения объемов и перемещения частиц жидкостей или газов это
- 1) теплопроводность 2) конвекция 3) теплопередача излучением
- 8. Выпаривание растворов проводят с целью
- 1) понижения концентрации раствора;
- 2) повышения концентрации раствора:
- 3) отделения катионов от анионов.
- 9. Вещества, изменяющие скорость реакции:
- 1) отходы; 2) полупродукты; 3) катализаторы; 4) углеводороды.
- 10. Требуется подогревать ацетон от 30°C до температуры кипения 56°C. В качестве теплоносителя используется конденсат водяного пара с температурой 110 °C. Конденсат охлаждается до температуры 70°C. Определить среднюю разность температур для прямотока и противотока.

Выполнить задание согласно списку:

Вариант 1	Алиева А.
Вариант 2	Бучина Ю.
Вариант 3	Воликов М.
Вариант 4	Гизетдинов Д.
Вариант 5	Грецова М.
Вариант 6	Жигарева А.
Вариант 7	Калмыкова К.
Вариант 8	Кроткина Е.
Вариант 9	Кураева А.
Вариант 10	Леонтьева Д.
Вариант 11	Максименков Д.
Вариант 12	Мещерякова В.
Вариант 13	Назарова Е.
Вариант 14	Погонин А.
Вариант 15	Полежай М.
Вариант 16	Поляков А.
Вариант 17	Севостьянова Е.
Вариант 18	Семенов А.
Вариант 19	Фазылов С.
Вариант 20	Цибискина В.
Вариант 21	Чудаев П.
Вариант 22	Шарагатова Е.

Ответы отправить на эл. почту <u>bandreeva68@mail.ru</u> не позже 16.00 07.05.2020