Тема: Выполнение операций над высказываниями

Цель: сформировать умение выполнять операции над высказываниями **Используемые источники**

Основные источники:

- 1. *Пехлецкий И.Д.* Математика: Учебник для студ. образоват. учреждений сред.проф. образования. М.: Издательский центр «Академия», 2014.
- 2. *Богомолов Н.В.* Математика 5-е изд., пер. и доп. Учебник для СПО М: Издательство Юрайт, 2015
- 3. Богомолов Н.В. Задачи по математике с решениями.: Учеб.пособие для средних проф. учеб. заведений. М.: Издательство Юрайт, 2015

Дополнительные источники:

- 1. Сайт: http://school-collection.edu.ru
- 2. «Математика»: учебно-методическая газета.
- 3. «Квант». Форма доступа: <u>www.kvant.mirror1.mccme.ru</u>

Электронная библиотека. Форма доступа: www.math.ru/lib

Задание:

- 1. Изучить теоретический материал, разобрать решенные примеры.
- 2. Выполнить самостоятельную работу и отправить ее на эл. почту anzhelika-sedova@mail.ru до 11.00.

Теоретические сведения

Логические операции над высказываниями

1. Отрицание.

Эта логическая операция соответствует в обыденной жизни частице «не».

Определение. Отрицанием высказывания х называется новое высказывание, которое является истинным, если высказывание $^{\mathfrak{X}}$ ложно, и ложным, если высказывание x истинно.

Отрицание высказывания x обозначается x и читается не x. Логические значения высказывания x модно описать с помощью таблицы, которая называется x маблицей x истинности:

x	\bar{x}
1	0
0	1

Пусть x высказывание. Так как x тоже высказывание, то можно образовать отрицание высказывания x, то есть высказывание x, которое

является двойным отрицанием высказывания x. Логические значения высказываний x и x совпадают.

2. Дизъюнкция (логическое сложение).

Эта логическая операция соответствует союзу «или».

Onpedenehue. Дизъюнкцией двух высказываний x, y называется новое высказывание, которое считается истинным, если хотя бы одно из высказываний x или y истинно и ложным, если они оба ложны.

Дизъюнкция высказываний x, y обозначается $x \lor y$ и читается «x или y». Логические значения дизъюнкции описываются таблицей истинности:

X	y	$x \mathbf{v} y$
1	1	1
1	0	1
0	1	1
0	0	0

Высказывания х, у называются членами дизъюнкции.

Пример.

x — «5>3», y — «2>4». Тогда x \forall y — «5>3» \forall «2>4» истинно, так как истинно высказывание x.

В алгебре логики союз «или» всегда употребляется в неисключающем смысле. Из определения дизъюнкции и отрицания следует, что высказывание $x^{\vee} \bar{x}$ всегда истинно.

3. Конъюнкция.

Эта логическая операция соответствует союзу «и».

Onpedenehue. Конъюнкцией двух высказываний x, y называется новое высказывание, которое считается истинным, если оба высказывания x, y истинны, и ложным, если хотя бы одно из них ложно.

Конъюнкция высказываний x, y обозначается $\overset{x \land y}{}$ и читается «x и y». Высказывания x, y называются членами конъюнкции. Логические значения конъюнкции описываются следующей таблицей истинности:

X	у	$x \wedge y$
1	1	1
1	0	0
0	1	0
0	0	0

Пример.

x – «6 делится на 2», y – «6 делится на 3». Тогда $x \wedge y$ – «6 делится на 2» «6 делится на 3» истинно.

Из определения операции конъюнкции видно, что союз «и» в алгебре логики употребляется в том же смысле, что и в повседневной речи. Но в обычной речи не принято соединять союзом «и» два высказывания, далеких друг от друга по содержанию, а в алгебре логики рассматривается конъюнкция двух любых высказываний.

Из определения операций конъюнкции и отрицания следует, что высказывание $x \wedge \overline{x}$ всегда ложно.

4. Импликация.

Эта логическая операция соответствует словам «если...,то...».

Определение. Импликацией двух высказываний x, y называется новое высказывание, которое считается ложным, если x истинно, а y ложно, и истинным во всех остальных случаях.

Импликация высказываний обозначается $x \rightarrow y$ и читается «если x, то y» или «из x следует y». Высказывание x называется yсловием или nосылкой, а высказывание y – cледствием илизаключением.

Высказывание $x \rightarrow y$ называется *следованием* или *импликацией*. Логические значения операции импликации описываются следующей таблицей истинности:

X	у	$x \rightarrow y$
1	1	1
1	0	0
0	1	1
0	0	1

Пример.

- 1) $x \ll 12$ делится на 6», $y \ll 12$ делится на 3». Тогда импликация $x \rightarrow y \ll 12$ делится на 6, то оно делится на 3» истинна, так как истинна посылка x, и истинно заключение y.
- 2) $x \ll 12$ делится на 2 и 3», $y \ll 12$ делится на 7». Тогда импликация $x \rightarrow y \ll 12$ делится на 2 и 3, то оно делится на 7» ложна, так как условие истинно, а заключение ложно.

Употребление слов «если...,то...» в алгебре логики отличается от употребления их в обыденной речи, когда, как правило, считается, что если высказывание x ложно, то высказывание «еслиx, то y» вообще не имеет смысла. Кроме того, строя предложение «если x, то y» в обыденной речи всегда подразумевается, что предложение y вытекает из предложения x.

Употребление слов «если..., то...» в математической логике не требует этого, так как в ней смысл высказываний не рассматривается.

Импликация играет важную роль в математических доказательствах, так как многие теоремы формулируются в условной форме «если x, то y». Если при этом известно, что x истинно и доказана истинность импликации $x \rightarrow y$ то истинно и заключение y. В этом случае пишут $x \Rightarrow y$ и говорят, что из x следует y. Это классическое правило вывода постоянно используется в математике.

5. Эквиваленция.

Эта логическая операция соответствует словам «тогда и только тогда, когда».

Определение. Эквиваленцией или эквивалентностью двух высказываний x, y называется новое высказывание, которое считается истинным, если оба высказывания x, y либо одновременно истинны, либо одновременно ложны, и ложным во всех остальных случаях.

Эквиваленция высказываний x, y обозначается символом $x \leftrightarrow y$ и читается «для того чтобы x, необходимо и достаточно, чтобы y» или «x тогда и только тогда,

когда у». Логические значения операции эквиваленции описываются следую щей таблицей истинности:

X	у	$x \leftrightarrow y$
1	1	1
1	0	0
0	1	0
0	0	1

Высказывания х, у называются членами эквиваленции.

Пример.

x — «Треугольник ABC с вершиной A и основанием BC равнобедренный», y — « \angle B = \angle C». Эквиваленция $x \leftrightarrow y$ — «Треугольник ABC с вершиной A и основанием BC равнобедренный тогда и только тогда, когда \angle B = \angle C». Эквиваленция $x \leftrightarrow y$ истинна, так как высказывания x и y либо одновременно истинны, либо одновременно ложны.

Эквивалентность играет важную роль в математических доказательствах. Известно, что значительное число теорем формулируется в виде необходимых и достаточных условий, то есть в форме эквивалентности. В этом случае, зная об истинности или ложности одного из двух членов эквивалентности и доказав истинность самой эквивалентности, делается вывод об истинности или ложности второго члена эквивалентности.

Самостоятельная работа

- 1. Даны простые высказывания:
- А: "Петя умеет плавать"
- В: "Сергей умеет прыгать"
- С: "Алеша умеет стрелять"

Даны формулы сложных высказываний, составленные из этих простых. Прочтите их, используя смысл каждого простого высказывания:

- 1. A+B· \overline{C}
- $2.\overline{A} \cdot \mathbf{B} \cdot \overline{C}$
- 3. A· B· \overline{C}
- 4. A $\cdot \overline{B} \cdot C$
- 5. A· $\overline{C} \cdot \overline{B}$
- 6. $\overrightarrow{A} \cdot B \cdot C$
- 2. Даны простые высказывания:
- "Данное число не кратное 3"
- "Данное число больше 50"

Прочтите сложные высказывания:

- 1) $A \cdot \overline{B}$; 2) $\overline{A \cdot B}$; 3) $\overline{A} \cdot \overline{B}$
- **3.** В состав истинного логического произведения входят три простых высказывания A,B,C. Известно, что A и B истинны. Может ли высказывание C быть одним из следующих:
- а) "Дважды два равно семи".
- б) "Слоны живут в Африке и Индии".
- B) "5x + 3 = 11x".
- **4.** Дано высказывание: "Иванов является членом сборной команды "Алгоритм". Какое из следующих высказываний есть логическим отрицанием данного?
- а). Не Иванов является членом сборной команды "Алгоритм".
- б). Иванов является членом сборной команды не "Алгоритм".
- в). Иванов не является членом сборной команды "Алгоритм".
- г). Неверно, что Иванов является членом сборной команды "Алгоритм".
- 5. Определите значения истинности высказываний:
- а) "Если 16 делится на 4, то 16 делится на 2".
- б) "Если 17 делится на 4, то 17 делится на 2".
- в) "Если 18 делится на 4, то 18 делится на 2".

- г) "Если 18 делится на 2, то 18 делится на 4".
- д) "Если 2· 2=5, то $8^3 \square 500$ ".
- е) "Если $2 \cdot 2 = 4$, то $7^2 = 81$ ".
- ж) "Если телепатия существует, то некоторые физические законы требуют пересмотра".
- з) "16 делится на 4 тогда и только тогда, когда 16 делится на 2".
- и) "17 делится на 4 тогда и только тогда, когда 17 делится на 2".
- к) "18 делится на 4 тогда и только тогда, когда 18 делится на 2".
- л) "15 делится на 5 тогда и только тогда, когда 15 делится на 10".

Критерии оценки:

верно выполненные 70 % заданий — оценка «3» верно выполненные 80 % заданий — оценка «4» верно выполненные 90 % заданий — оценка «5»