- 1. Составить краткий конспект. Изучить тему.
- 2. Выполнить задания.
- 3. Направить выполненные задания на эл. почту преподавателя не позднее окончания занятия по расписанию 14.10.2020

Виды химической связи

Ковалентная химическая связь – это связь, возникающая между атомами за счет образования общих электронных пар.

Схема образования ковалентной неполярной связи между атомами водорода:

$$H \cdot + \cdot H \rightarrow H : H$$
 или $H - H$

Таким образом возникает связь у всех двухатомных молекул простых веществ; при этом возникают как одинарные, так и кратные связи:

$$:\dot{\mathbb{N}}\cdot+\dot{\mathbb{N}}:\to (\dot{\mathbb{N}}):$$
 или $\mathbb{N}=\mathbb{N}$

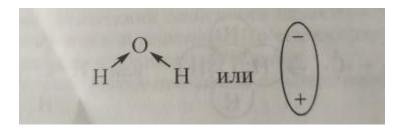
Ковалентной связью могут быть соединены атомы разных химических элементов:

$$H \cdot + \cdot \ddot{C} : \rightarrow H : \ddot{C} :$$
 или $H - C I$ $H \cdot + \cdot \dot{C} : \rightarrow H : \ddot{C} : H$ или $H - \ddot{C} - H$ $H \cdot + \ddot{C} - H$

При этом общая электронная пара будет смещена к атому элемента, проявляющего наиболее сильные неметаллические свойства. Такая связь является ковалентной полярной связью.

Электроотрицательностью называют способность атомов химических элементов оттягивать к себе общие электронные пары.

Ряд электроотрицательности:


$$H \rightarrow C \rightarrow S \rightarrow Br \rightarrow Cl \rightarrow N \rightarrow O \rightarrow F$$

Электроотрицательность возрастает

Из-за разной электроотрицательности атомов общая электронная пара смещена, на атоме с наибольшей электроотрицательностью сосредоточен частичный отрицательный заряд, с меньшей – положительный. Такие молекулы называют диполями.

$$\begin{array}{ccc}
 & & & & H^{\delta+} \\
 & \downarrow & & \downarrow \\
 & & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow \\$$

Молекула воды, имея угловое строение, тоже является диполем:

Задание. Как связь является наиболее полярной:

$$H-Cl; H-Br; H-S?$$

Водородная связь — это связь между атомом водорода и атомом химического элемента, обладающего высокой электроотрицательностью.

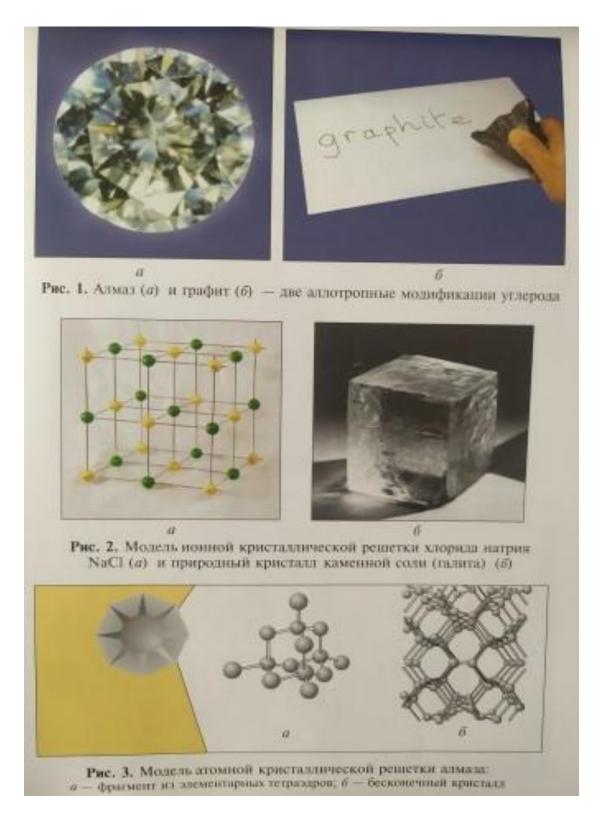
$$H \xrightarrow{\delta +} F \xrightarrow{\delta -} \cdots H \xrightarrow{\delta +} F \xrightarrow{\delta -}$$

Водородная связь значительно менее прочная, чем ковалентная.

Ионная химическая связь — это связь, возникающая между анионами и катионами за счет из электростатического притяжения.

Схема образования ионной связи:

$$Na \cdot + \cdot Cl : \rightarrow Na^{+}[:Cl:]^{-}$$


Ионная связь возникает между типичными металлами и неметаллами.

Металлическая связь – это связь, возникающая в металлах и сплавах между атомами и ионами металлов, осуществляемая совокупностью валентных электронов.

$$Me^0 - n \ \acute{e} \leftrightarrow Me^{n+}$$

Типы кристаллических решеток и их характеристики

Тип	Атомная	Ионная	Молекулярная	Металлическая
решетки				
Вид частиц				
в узлах	Атомы	Ионы	Молекулы	Атомы и ионы
решетки				
Химическая связь	Ковалентная	Ионная	Силы межмолекулярного взаимодействия (водородная связь)	Металлическая связь
Примеры веществ	Кремний, алмаз, графит	Основания, соли	Йод, лед, «сухой лед»	Медь, железо, золото, сплавы
Свойства веществ	Высокая твердость, прочность	Твердые, прочные, нелетучие, хрупкие, с высокими температу- рами плавления, хорошо растворимы в воде	Легкоплавкие, летучие, обладают запахом	Высокая электро- и теплопроводность, магнитные свойства, металлический блеск, пластичные

Задание 1. Выбрать вещества с ионным типом связи:

KCl; CaBr₂; NH₃; BaO; Li₂S; SiO₂

Задание 2. Выпишите в четыре колонки вещества с ковалентной неполярной, ковалентной полярной, ионной, металлической химической связью:

 P_4 ; Cu; LiBr; PCl_3 ; O_2 ; Fe; H_2S ; CaF_2 ; Cl_2 ; H_2O ; $CuCl_2$; Na